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ABSTRACT: We computationally designed an ultranarrow-band wavelength-
selective thermal radiator via a materials informatics method alternating between
Bayesian optimization and thermal electromagnetic field calculation. For a given
target infrared wavelength, the optimal structure was efficiently identified from over
8 billion candidates of multilayers consisting of multiple components (Si, Ge, and
SiO2). The resulting optimized structure is an aperiodic multilayered metamaterial
exhibiting high and sharp emissivity with a Q-factor of 273. The designed
metamaterials were then fabricated, and reasonable experimental realization of the
optimal performance was achieved with a Q-factor of 188, which is significantly
higher than those of structures empirically designed and fabricated in the past. This
is the first demonstration of the experimental realization of metamaterials designed
by Bayesian optimization. The results facilitate the machine-learning-based design
of metamaterials and advance our understanding of the narrow-band thermal
emission mechanism of aperiodic multilayered metamaterials.

■ INTRODUCTION

All materials emit or absorb thermal radiation. Therefore, in
the exploration to utilize various thermal energy resources,
tailoring thermal radiation plays a fundamentally important
role.1−3 While conventional thermal radiators typically exhibit
broad-band, polarization-independent, and omnidirectional
emission, the technology to control thermal radiation is
rapidly progressing with the development of the fields of
nanophotonics and metamaterials. Electromagnetic metamate-
rials are artificially engineered materials with characteristics
tailored over a broad range of wavelengths.4,5 Wavelength-
selective narrow-band thermal emission control is a key
technology with applications in high-efficiency thermophoto-
voltaics,6−8 incandescent light sources,9 biosensing,10−12

microbolometers,13,14 imaging,15 and infrared heaters.16 Differ-
ent types of artificial nanostructures have been proposed in the
past few decades: multilayer,17,18 photonic crystal,19−21 and
metal−insulator−metal (MIM) metamaterials.22−27

Development of metamaterial thermal radiators generally
requires high-cost nanofabrication. The reported narrow-band

thermal radiator with the highest Q-factor to date (∼200)
consists of 2D-grating-coupled surface phonon polaritons.28

However, there is still a problem because there are large
unwanted peaks and background in the emissivity spectra in
the target wavelength range. This can be quantified by the low
value of the figure of merit (defined to evaluate the radiator
performance as will be shown later) due to the low wavelength
selectivity. In addition, including another experimental
demonstration of multiple quantum wells and a photonic
crystal slab with a Q-factor of 107,29 the complicated
fabrication process faces practical problems because many
applications of radiators require large surface area. In this
sense, among various classes of metamaterials, multilayers with
relatively less complication in fabrication have merit in
scalability. Control of thermal emission by multilayer
structures has been successfully demonstrated with a Fabry−
Perot resonator with a Q-factor of 8730 and a distributed Bragg
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reflector with a Q-factor of 36.31 However, these structures are
usually realized by simple and periodic design, despite the fact
that periodic structures are a tiny subset of the entire possible
range of multilayer structures. Several studies have reported
control of light by such “aperiodic” multilayer structures,32−36

but these results were obtained by numerical simulation.
Furthermore, the optimal design of aperiodic multilayered
metamaterials with desired thermal emission characteristics has
been difficult because the search space, i.e., the number of
possible candidates, becomes enormous.
The key technology to overcome this challenge is “materials

informatics” (MI), which has the capability to efficiently
identify materials with preferred properties. MI aims to identify
the “best” materials with optimal structure and/or composition
using unrecognized complex correlations in the data. It has
been applied to find novel materials such as cathode materials
for the lithium-ion batteries,37 nitride semiconductors
composed of earth-abundant materials,38 piezoelectric materi-
als,39 and thermoelectric materials.40−44 While these works
have aimed to realize high-throughput screening of the best
materials from the pool of stoichiometric compounds, another
course of MI aims to create nanostructures by identifying the
optimal geometry that maximizes the objective properties. This
includes nanoparticles embedded in a matrix to modulate heat
conduction,45 solid−solid interfaces to identify energetically
stable structures,46 and multicore structures of plasmonic
nanowires to control optical scattering and cloaking effects.47

On the basis of the above progress in geometry optimization,
the methodology using Bayesian optimization has been
extended to the design of nanostructures with optimal thermal
conductance48 and thermoelectric figure of merit.49 There, to
efficiently identify the optimal structures among the enormous
number of candidates, phonon/electron transport calculations
and machine learning/prediction are alternately conducted.
The previous works have shown that such an approach can
considerably accelerate nanostructure design for transport
properties. As the method is not limited to phonons/electrons
and is applicable to any other quasi-particles, this work aims to
perform such optimization for polaritons and associated
thermal radiation. It should be noted that for thermal radiation
there have been reports on the optimal design of multilayer
structures using a genetic algorithm,50,51 but genetic algorithms
do not involve machine learning/prediction. In addition,
recent studies52,53 reported numerical nanophotonics designs
based on neural networks. The essential drawback of their

approach is that it is “exploitation-only”. There is plenty of
evidence that the exploitation-only approach cannot be more
efficient than the approach balancing exploitation and
exploration.54 On the other hand, Bayesian optimization
identifies an unknown function with respect to the descriptors
with as few iterations as possible, where, at every iteration,
learning and prediction based on a Gaussian process are
performed. Our approach uses Bayesian inference to quantify
uncertainties and takes the optimal balance between
exploration and exploitation, and we have used it to solve an
essentially more difficult problem than the ones solved using
neural networks. Although the previous studies optimized the
thickness of each layer only, we optimized how the three
materials are arranged, i.e., our method optimizes the ordering
of the materials as well. There are a huge number of possible
orderings, which adds substantial difficulty to the optimization
problem.
In this work, we computationally designed an ultranarrow-

band wavelength-selective thermal radiator via Bayesian
optimization methods55 and experimentally demonstrated the
optical characteristics of the designed multilayered metamate-
rials. Potential applications of this study include infrared
sensors, infrared imaging, and infrared heaters since the target
wavelength is in the mid-infrared range.

■ RESULTS AND DISCUSSION

Figure 1a shows a schematic of the optimization method with
MI combining electromagnetic simulation and Bayesian
optimization. The designed metamaterial is divided into N
unit layers with thickness dt. A unit layer can be either Ge, Si,
or SiO2. The choice of compositions are commonly used
semiconductor and dielectric materials for their high and low
refractive indices, respectively. Since tungsten was chosen as
the substrate, the substrate was considered opaque. Four basic
elements are required when materials informatics is performed:
the descriptor, calculator, evaluator, and optimization method.
The descriptors are used to describe possible structure
candidates during the optimization process. In this study, we
used a text flag to indicate the state of each layer: “1”, “2”, and
“3” represent the Ge, Si, and SiO2 layers, respectively. Such a
simple descriptor has been shown to realize efficient
optimization48,49 in addition to being intuitive, general, and
practical, which are important in the actual material develop-
ment. As for the calculator, we employed the transfer matrix

Figure 1. (a) Schematic of the optimization method with material informatics combining electromagnetic simulation and Bayesian optimization.
(b) Schematic of the ideal optical property of the narrow-band thermal radiator.
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method (TMM) to calculate the emissivity spectra (see
Methods).
The desired optical property of the ultranarrow-band

thermal radiator is shown in Figure 1b. The ideal radiator
has a sharp and high thermal emission at a target wavelength λt
with a bandwidth Δλ, and low thermal emission in the rest of
the infrared wavelength region to reduce radiative heat loss.
For the evaluator of designed multilayered metasurfaces, a
figure of merit (FOM) is defined as follows:
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where ελ is the spectral normal emissivity, Ibλ is the spectral
blackbody intensity, and λmin and λmax are the minimum and
maximum wavelengths considered for the optimization.
As we have N unit layers and three possible materials (Ge,

Si, or SiO2), the total number of candidate structures is 3N,
which becomes enormous for a useful range of N. For these
large-scale problems, efficiency of optimization becomes
critical, and thus, we need a method that surpasses conven-
tional optimization tools. For this, we employ Bayesian
optimization using the open-source library COMBO (see
section S1 in the Supporting Information).
As shown in Figure 1a, suppose that FOMs of n candidates

are initially calculated, and we are to select the next ones to
calculate. A Bayesian regression function is learned from n
pairs of descriptors and FOMs (i.e., training examples). For all
of the remaining candidates, a predictive distribution of FOMs
is estimated. Finally, FOMs are calculated for the selected
candidates, and they are added to the training examples. By
repetition of this procedure, the calculation of FOMs is
scheduled optimally, and the optimized structure can be found
quickly. Here, one problem is that the Bayesian optimization
requires large computational memory because it uses
information on the text data for all of the candidates.
Therefore, we employed a hierarchical method to reduce the
required size of computational memory, as will be explained
later (also see Figure S1).
First, we computationally designed narrow-band thermal

radiators with three candidate materials (Ge, Si, and SiO2) for
a target wavelength λt of 6.0 μm. The wavelengths Δλ, λmin,
and λmax were set to 4 nm, 4 μm, and 8 μm, respectively. The
number of layers N was fixed at 18. Variation of the total
thicknesses of the multilayers, ttotal, was also considered within
the range from 3.6 to 4.0 μm with an increment of 0.02 μm,
giving 21 variations of ttotal. Therefore, the total number of
possible candidates is 318 × 21 = 8 135 830 269. It should be
noted that it was not possible to account for structures with
translational and reversal symmetries prior to the calculation to
reduce the number of candidates. In this case, the numbers of
initial and predicted candidate structures were set to 200 and
400, respectively. The computational load for this calculation
was so large that all of the candidates could not be evaluated.
For the sake of saving the computational memory, the
optimization was pursued in hierarchical steps; the overall
candidates were randomly divided into 42 000 groups, and the
optimization was first performed for each group, after which

the global best structure was identified by ranking these 42 000
local best structures. The total computational time was about
24 days on our cluster machine with 24 parallel computation
(UNI-i9X, TOWA Electric, Inc.). The computational memory
size in this work was about 128 GB, which set the maximum
total number of layers to be 18. This could be enlarged by
using a computer with a larger memory, but as the FOM of the
designed structure is already close to unity, there is in fact not
much room left for noticeable improvement even if we further
increased the number of layers. Therefore, one can see the
current setup to be nearly optimal and free from hardware
restrictions.
The resulting optimized structures are shown in Figure 2a. It

is interesting to note that the optimized structure with the

maximum FOM consists of only Ge and SiO2 layers despite
the fact that the optimization was performed including Si also.
The obtained structure is a counterintuitive aperiodic multi-
layer, which is explicitly different from conventional multi-
layered thermal radiators with periodic structures. The total
thickness ttotal of the optimal multilayer in this case is 3.80 μm.
Figure 2b shows the history of the maximum FOM with

respect to the number of calculated structures. Here we
randomly chose the cases of 20 groups with about 200 000
candidates each to show the optimization efficiency and its
statistics. The maximum FOM could be realized within
calculations of 168 000 000 structures on average, which
means only 2.06% of the candidate structures needed to be
calculated to identify the optimal structure.
We also designed two other types of narrow-band thermal

radiators with different target wavelengths of 5.0 and 7.0 μm.
For these cases, using the finding in the case of λt = 6.0 μm that
the optimal structure consists only of two species (Ge and
SiO2), the optimization was performed for these two species
instead of the above three species, which reduced the number
of candidates to 218 × 21 = 5 505 024. The bandwidth Δλ (=4
nm) and the evaluation range of wavelengths (λmin = 4.0 μm
and λmax = 8.0 μm) were kept the same as in the three-species
optimization, and the number of initial candidate structures
and predicted candidate structures were reduced to 100 and
20, respectively. The resulting optimized structures for λt = 5.0
and 7.0 μm (Figure 3a,b) consist of aperiodic multilayers
similar to that for λt = 6.0 μm. The total thicknesses of the

Figure 2. (a) Optimized structure of the narrow-band thermal emitter
with three material candidates (Ge, Si, and SiO2). The optimal
structure turned out to consist of only Ge and SiO2 layers. (b)
Histories of the FOMs of 20 randomly selected groups. The global-
maximum FOM was found in a certain group that is indicated by the
thick red line.
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multilayers for the corresponding samples are ttotal = 3.78 and
3.96 μm, respectively.
The computational load for the two-species calculations was

relatively small, so all of the candidates could be calculated to
validate the optimal structure and efficiency. As a result, the
optimal structures obtained by Bayesian optimization were
confirmed to be exactly the same as the structures with
maximum FOM among all of the candidates. We also
confirmed from the probability distributions (see Figure S2)
that the probability monotonically decreases as the FOM value
approaches the maximum without noticeable local minima,
indicating that the current problem is suited for Bayesian
optimization.
Figure 4a shows the corresponding calculated spectral

directional emissivities of the optimized structures. Extremely
sharp and high emissivity can be realized with the optimized
structures, and there are no extra peaks within the wavelength
range of interest (from 4 to 8 μm). The corresponding
emissivities of the peaks are unity, and their Q-factors are 217,
273, and 233 for λt = 5, 6, and 7 μm, respectively.
Finally, we experimentally fabricated the optimized

structures by sputtering to demonstrate the feasibility of the
structural optimization. Figure 4b shows the measured spectral
directional emissivities of the fabricated structures. The three
sharp peaks that correspond to the ones seen in the numerical
simulations can be clearly observed, although the locations of
the peaks are shifted by about 0.5 μm relative to the designed
structures. The obtained peak emissivity values of the λt = 5, 6,
and 7 μm samples are 0.76, 0.83, and 0.61, and the Q-factors
are 132, 188, and 109, respectively. The reason for the

discrepancies in the peak positions and emissivities/Q-factors
of the designed and fabricated structures could be that the
thicknesses of the constituent layers in the fabricated samples
somewhat deviate from the designed values. Table 1 quantifies

the moderate but non-negligible differences between the layer
thicknesses of the designed and fabricated structures obtained
from the cross-sectional transmission electron microscopy
(TEM) image for λt = 6.0 μm (Figure 4c) and the cross-
sectional scanning electron microscopy (SEM) images for λt =
5.0 μm and λt = 7.0 μm (Figure S3). When we calculated the
spectral directional emissivity for the layer thicknesses in the
fabricated sample (Table 1), the position of the peak
approached the experimentally measured value (Figure S4).
The remaining discrepancy can be attributed to the minor
differences in the optical properties of the sputtered material
and those used as inputs to the numerical simulation, since the
optical properties may differ depending on fabrication
conditions such as the deposition rate.
To determine the sharpness of the interface, the atomic

concentrations at the Ge−SiO2 interface were observed by
energy-dispersive X-ray spectroscopy (EDX) (Figures S5 and
S6), and the interface was confirmed to be sharp with small
interdiffusion. Although fabrication with a more accurately
calibrated sputtering process would improve the reproduction
of the designed performance, which remains to be our future
task, the key features in the designed structure, namely,
ultranarrow-band emission with controlled peak wavelength,
were clearly realized in the experiments. The obtained Q-
factors are about 217−273 in the computational design and
about 109−188 in the experiment, which are significantly

Figure 3. Optimized structures of the narrow-band thermal emitters
for the target wavelengths of (a) 5.0 and (b) 7.0 μm.

Figure 4. (a) Calculated spectral directional emissivities of the optimized structures obtained with Bayesian optimization and (b) measured spectral
directional emissivities of the fabricated structures aimed at λt = 5.0 μm (red), 6.0 μm (blue), and 7.0 μm (green). (c) Cross-sectional TEM images
of the fabricated sample for λt = 6.0 μm.

Table 1. Layer Thicknesses of the Designed and Fabricated
Structures (in μm)

λt = 5.0 μm λt = 6.0 μm λt = 7.0 μm

layer no. sim. exp. sim. exp. sim. exp.

1 0.42 0.42 0.42 0.43 0.44 0.44
2 0.63 0.61 0.63 0.69 0.66 0.62
3 0.42 0.43 0.42 0.45 0.44 0.44
4 1.05 0.97 0.85 0.91 0.88 0.84
5 0.63 0.63 0.85 0.87 0.44 0.45
6 0.63 0.58 0.63 0.65 0.22 0.22
7 − − − − 0.44 0.44
8 − − − − 0.44 0.41
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higher than the values reported in the previous studies. In
addition, the FOM of this work is significantly higher than in
previous experimental work:28 the FOM of previous work,
evaluated with the same wavelength range around the target
wavelengths, was only 0.02 for 0° and further decreased to
−0.16 for 1°, which are considerably smaller than the FOM of
0.77 for the current structure aimed at 6 μm. Although the
locally extracted Q-factor in the previous work reached 200,28

the emissivity spectra had much larger background and
unwanted peaks, and thus, our experiment exhibits significantly
higher wavelength selectivity. To our knowledge, this is the
first demonstration that narrow-band thermal radiators
designed by machine learning can be realized in experiments.
We now discuss the mechanism of the enhanced emission in

terms of the magnetic field profiles shown in Figure 5. The
intensities of the magnetic profiles were normalized by the
intensity of the normal incident light. In Figure 5a,b for λt = 5
and 6 μm, there are strong confinements of electromagnetic
energy in the Ge layer. On the other hand, in Figure 5c, for λt
= 7 μm, strong confinement can be observed in the SiO2 layer.
These emissivity enhancements originate from localized
modes, similar to defect modes of photonic crystals.56 Defect
modes of photonic crystals exist inside a photonic band gap;
therefore, this phenomenon is usually observed with periodic
structures (see section S3). However, it is interesting to note
that we observed a similar localized mode inside the aperiodic
multilayered metamaterials. In other words, two or more
optimized defect layers are introduced into the photonic
crystals that effectively serve to constitute a sharp peak in the
emissivity. In particular, in Figure 5c, the defect layer
corresponds to three layers of a thin SiO2 layer and upper
and lower Ge layers sandwiching the SiO2 layer. Therefore, the

aperiodic structure, when optimized, successfully suppresses
the unnecessary emissivity peaks due to higher-order
harmonics, or in other words, shifts the peaks to a shorter
wavelength range. To quantify how much power is absorbed by
the proposed structure, the power dissipation density w was
calculated as57

ε ε ω= ″ | |w E
1
2 0

2
(2)

where ε0 is the permittivity of vacuum, ε″ is the imaginary part
of the complex dielectric function, and ω is the angular
frequency. The power dissipation densities, which are shown in
Figure 5d−f, indicate the strong absorption at the tungsten
substrate, although there is weak absorption within the SiO2
layer. Therefore, thermal energy dissipation mainly occurs in
the metallic substrate because of the large optical loss.
Because of the localized mode of the electromagnetic wave,

the proposed emitter has an angular dependence of the optical
properties (Figure S8). Isotropic thermal emission is preferred
in certain applications such as infrared heaters. In this design,
the angular dependences of the optical properties of transverse
magnetic and transverse electric polarization within 20° are
small, as the spectral shifts were only about 1%, which
therefore is acceptable for practical applications. It should be
noted that it is also possible to include the angular dependence
in the FOM for preferred angular dependence, which will be
explored in the future. The obtained results enhance our
understanding of the narrow-band thermal emission mecha-
nism of aperiodic multilayered metamaterials and facilitate the
effective design of new metamaterials via Bayesian optimiza-
tion.

Figure 5. (a−c) Contour plots of normalized magnetic field intensity and (d−f) power dissipation density for target wavelengths of (a, d) 5.0 μm,
(b, e) 6.0 μm, and (c, f) 7.0 μm.
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■ CONCLUSION

We computationally designed ultranarrow-band wavelength-
selective thermal radiators via Bayesian optimization methods
and experimentally demonstrated the optical characteristics of
the designed multilayered metamaterials. The optimized
structures could be found within calculations of only a few
percent of the total numbers of candidate structures. The
optimized structure for each target wavelength consists of
aperiodic multilayers that give rise to sharp and near-unity
emissivity. The designed structures were experimentally
realized with reasonable accuracy, and the obtained structures
exhibit Q-factors significantly larger than in previous works
based on empirical design. Post-analysis of the magnetic fields
of the structures revealed that the aperiodic multilayers can
result in highly effective localization. The current work
demonstrates the effectiveness, feasibility, and accuracy of
developing narrow-band thermal emission materials using
Bayesian optimization. In addition, the follow-up analysis of
the mechanism demonstrates that such a materials informatics
approach is also useful to enhance our understanding of
narrow-band thermal emission.

■ METHODS

Safety Statement. No unexpected or unusually high safety
hazards were encountered.
Electromagnetic Simulation. The TMM was used to

solve Maxwell’s equations, allowing the calculation of the
spectral radiative properties of multilayered metamaterials.58

The spectral directional emissivity could be obtained by
applying Kirchhoff’s law, i.e., ελ = 1 − Rλ, where Rλ is the
reflectance obtained from the TMM simulation. The dielectric
functions of SiO2, Si, Ge, and W were obtained from tabulated
data.59

Bayesian Optimization. Bayesian optimization is a design
algorithm based on machine learning60 and a well-established
technique for black-box optimization.55 Bayesian prediction
models are employed to predict the black-box function, where
the uncertainty of the predicted function is also evaluated as
predictive variance. The next candidate for the experiment is
selected on the basis of predicted values and variances.
Bayesian optimization has been recognized as an important
technique in machine learning research because of successful
hyperparameter tuning in deep learning algorithms. Bayesian
optimization can be applied not only to materials sciences but
also to various kinds of problems. However, the precondition is
that each candidate point is represented as a numerical vector
of identical dimensionality (i.e., descriptor).
Sample Fabrication and Reflectivity Measurement.

The narrow-band thermal radiators designed on the basis of
the Bayesian optimization method were experimentally
fabricated and characterized. SiO2 and Ge layers were
alternately deposited on a tungsten substrate by a magnetron
sputtering machine. An FTIR spectrometer (iS50R, Thermo
Scientific Nicolet) was used for reflectivity measurements, with
an opaque gold film as a reference. In order to avoid
atmospheric absorption, the measurements were conducted
with flowing nitrogen gas. The incident angle was arranged
within 1°, and therefore, the measured spectral reflectivity data
could be considered as near normal reflectivity. Once the
reflectivity was obtained, the spectral directional emissivity was
obtained by applying Kirchhoff’s law.
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