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The optical response of coherent thin-film multilayers is often represented with Fresnel coefficients in a
2 � 2 matrix configuration. Here the usual transfer matrix was modified to a generic form, with the
ability to use the absolute squares of the Fresnel coefficients, so as to include incoherent �thick layers� and
partially coherent �rough surface or interfaces� reflection and transmission. The method is integrated
by use of models for refractive-index depth profiling. The utility of the method is illustrated with various
multilayer structures formed by ion implantation into Si, including buried insulating and conducting
layers, and multilayers with a thick incoherent layer in an arbitrary position. © 2002 Optical Society of
America
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1. Introduction

The coherent optical reflectance and transmittance of
a multilayer structure are readily represented, for
normally incident radiation, as a product of
matrices,1–4 the system transfer matrix. This ma-
trix method assumes a multilayer structure com-
posed of optically isotropic and homogeneous layers,
with plane and parallel faces. The elements of the
system transfer matrix can be written in terms of the
complex-amplitude reflection and transmission coef-
ficients r and t of the multilayer structure.

It is often necessary to analyze a system of several
layers for materials with one-dimensional inhomoge-
neity. Ion-implanted materials are used as exam-
ples of a multilayer modeling application. In
particular, doping profiles are simulated by means of
partitioning the implanted area into a set of homo-
geneous parallel-faced sampling layers.5–9 The re-
fractive index is constant within each layer but varies
in magnitude from layer to layer, thus representing
the one-dimensional inhomogeneity. Modeling of
multilayer heterostructures7–13 is similarly illus-
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trated provided that appropriate dispersion models
are chosen for the refractive index of the different
materials in the structure. The assumption of co-
herent light propagation, implied by the form of the
ordinary system transfer matrix, may lead to narrow
�Fabry–Perot� oscillations in the calculated reflec-
tance and transmittance spectra. These oscillations
occur when at least one of the layers of the multilayer
structure is thick enough �compared with the inci-
dent radiation wavelength� and transparent enough
to yield multiple coherent reflections. Since in prac-
tice interference-destroying effects, such as nonpar-
allel surfaces of the thick film or limited resolution,
may exist in the measurements, these narrow oscil-
lations are not usually observable. Either because
of phase incoherency within the thick layer or be-
cause of the limited resolution of the measurement,
an option allowing the suppression of the thick-film
oscillatory pattern should thus be included in the
model. The source bandwidth, ��, is an another fac-
tor that affects coherence �coherence length, L � �2�
n���.

In this paper a generic matrix method is developed
for replacing the ordinary coherent system transfer
matrix and for allowing both coherent and incoherent
multiple reflections to be taken into account. A first
attempt presented elsewhere,14 restricted by use of
analytical expressions to a thin-solid-film multilayer
structure on a single thick backsubstrate, is now com-
pleted by means of matrix formulation and general-
ized to any arbitrary succession of coherent,



incoherent, partially coherent, absorbing, transpar-
ent, homogeneous, or inhomogeneous layers. Con-
sequently, analysis of complex structures with
absorbing intermediate incoherent layers or with
more than one incoherent layer has become feasible.
Suppression of interference is achieved in the generic
matrix by means of replacing the Fresnel coefficients
in the coherent transfer matrix with their absolute
squares so that intensities can be added instead of
field complex amplitudes. Treating incoherence
with the generic matrix yields the same results as do
the reflectance and transmittance correction formu-
las based on partial wave intensity summation, found
in literature15 for an arbitrary thin-solid-film multi-
layer structure on one side of a thick substrate. In
addition, it has the advantage of being applicable to
multilayers with a thick layer in an arbitrary position
and under certain conditions to multilayers with
more than one incoherent layer. The use of the ge-
neric matrix is also extended to the conditions of
partial coherence. In a previous presentation the
convenience of a transfer matrix for incorporating
partial coherence was illustrated.14 Partial coher-
ence, usually resulting from the existence of a rough
surface or interface, affects the Fresnel coefficients,
which are multiplied by correction factors.16–19

These modifying factors represent the phase differ-
ences in the reflected and the transmitted beams that
result from a Gaussian distribution of irregularities.
Finally, applications of coherency, partial coherency,
and incoherency are illustrated, thus verifying the
potential of the generic matrix method for calculating
the reflectance and transmittance of any arbitrary
succession of thin and thick conducting or insulating
layers with rough surfaces and interfaces.

2. Matrix Method

A. Background

The relationship between the tangential components
of electric field E vector on opposite sides of a film is
found to be linear, thus leading to the use of conve-
nient and easy-to-handle matrix equations.

The multilayer structure shown in Fig. 1 is com-
posed of N layers with complex refractive indexes and
N � 1 interfaces. The subscripts of the field ampli-
tudes in Fig. 1 indicate the medium; the � and �
superscripts signify right- and left-going waves, re-

spectively, and the prime is used for waves on the
right-hand side of an interface. The use of the �
and � superscript electric vectors arises from the
description of the tangential electric field, Et, at any
position within the layer as a superposition of two
plane waves traversing the medium at opposite di-
rections �Et � Et

� � Et
��.

The field amplitudes in each layer are related by a
product of 2 � 2 matrices in sequence. Each side �for
example, i� of an interface is represented by the cor-
responding dynamical matrix Di,3 whereas the action
of the bulk of each layer is represented by its propa-
gation matrix, P. The field amplitudes on the left-
hand side of an interface �for example, Em�1

� and
Em�1

� at the mth interface in Fig. 1� are related with
the corresponding field amplitudes on the right-hand
side as

�Em�1
�

Em�1
� � � Dm�1

�1 Dm�E	m
�

E	m
��

�
1

tm�1,m
� 1 rm�1,m

rm�1,m 1 ��E	m
�

E	m
�� . (1)

The product Dm�1
�1 Dm of the dynamical matrices �the

so-called refraction or transmission matrix, Dm�1,m,
of the interface� is a 2 � 2 matrix, and when expressed
in terms of the complex Fresnel reflection, rm�1,m, and
transmission, tm�1,m, coefficients of the interface, it
takes the same form in both cases of s or p waves.

The field amplitudes in the left- and the right-hand
sides of the �m � 1�th layer are related by the prop-
agation matrix Pm�1, of the layer:

�E	m�1
�

E	m�1
� � � Pm�1�Em�1

�

Em�1
� �

� �exp�i
m�1� 0
0 exp��i
m�1�

��Em�1
�

Em�1
� � , (2)

where 
m�1 � 2��nm�1dm�1 is the phase thickness
imposed by the bulk of the �m � 1�th layer upon one
traversal of light �� is the wave number and nm�1 and
dm�1 are the refractive index and the thickness of the
layer, respectively�. The repeated application of the
above transformations for the N layers and the N � 1
interfaces leads to a product of N � 1 2 � 2 matrices
�one refraction matrix and N layer transfer matrices�:

�E0
�

E0
�� � D0

�1�

m�1

N

DmPmDm
�1�DN�1�E	N�1

�

E	N�1
� �

� �T11 T12

T21 T22
��E	N�1

�

E	N�1
� � . (3)

The product matrix resulting from the above proce-
dure is again a 2 � 2 matrix referred to as the system
transfer matrix T � T0��N�1�.

B. General Matrix Approach: Description of the Method

1. Generalized Form of the Refraction Matrix
The complex reflection and transmission coefficients
of the multilayer are given �straightforwardly by

Fig. 1. Notation of electric field amplitudes within an arbitrary
multilayer. The subscripts indicate the medium, the � and the �
signs distinguish between left- and right-going waves, respec-
tively, whereas a prime is used for waves at the right-hand side of
an interface.
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their definitions� in terms of the system transfer ma-
trix elements Tij as

r � r0,N�1 �
E0

�

E0
��

E 	N�1
� �0

�
T21

T11
, (4)

t � t0,N�1 �
E	N�1

�

E0
� �

E 	N�1
� �0

�
1

T11
, (5)

r	 � rN�1,0 �
EN�1

�

EN�1
� �

E0
��0

� �
T12

T11
, (6)

t	 � tN�1,0 �
E0

�

EN�1
� �

E0
��0

�
Det T

T11

�Det T � T11T22 � T12T21�, (7)

from which the front and the back reflectances R, R	
and transmittances T, T	 are obtained as a square of
the magnitudes of the complex vectors r, r	 and t, t	,
respectively.

Since Eqs. �4�–�7� relate the Tij elements to the
complex reflection and transmission vectors, the T
matrix can be written as

T0��N�1� � �T11 T12

T21 T22
�

�
1

t0,N�1
� 1 �rN�1,0

r0,N�1 t0,N�1tN�1,0 � r0,N�1rN�1,0
� .

(8)

In this matrix t0,N�1tN�1,0 � r0,N�1rN�1,0 � T22�T21,
which generally differs from unity. The application
of the above matrix is extended straightforwardly
from a multilayer to an interface by means of reduc-
ing the reflection and the transmission complex vec-
tors of the multilayer to the corresponding Fresnel
coefficients of the interface:

�Em�1
�

Em�1
� � �

1
tm�1,m

� � 1 �rm,m�1

rm�1,m �tm�1,mtm,m�1 � rm�1,mrm,m�1�
�

� �E	m
�

E	m
�� . (9)

For nonabsorbing media, the Stokes relations rep-
resenting the reversibility principle1 at an ideal
interface are rm�1,m � �rm,m�1, tm�1,mtm,m�1 �
rm�1,mrm,m�1 � 1, and the generalized form reduces
to the ordinary refraction matrix. The generalized
form of the refraction matrix with tm�1,mtm,m�1 �
rm�1,mrm,m�1 � 1 can represent either a situation in
which the Stokes relations1 appear to be nonrealis-
tic assumptions of the optical response of an inter-
face �nonideal interface, e.g., a rough one� or just a
situation with absorbing media. For absorbing
media separated by an ideal interface the Stokes
relations take a more general form that contains

phase conjugation �tm�1,mr*m,m�1 � rm�1,mt*m�1,m � 0,
tm�1,mt*m,m�1 � rm�1,mr*m�1,m � 1� allowing the de-
terminant of the matrix in Eq. �9� to differ from unity.

2. Introduction of Partial Coherence
One can introduce partial coherence produced by
macroscopic surface or interface roughness by modi-
fying the Fresnel coefficients of the respective
interfaces.14,16–19 The modifying terms represent
the phase differences in the reflected and the trans-
mitted beams that result from a Gaussian distribu-
tion of irregularities of height �h and of rms height Z.
The modified coefficients for a rough mth interface
�m � 1 corresponds to a rough surface� are14,16,17

rm�1,m � rm�1,m
�0� exp��2�snm�1��2� � �rm�1,m

�0� , (10a)

rm,m�1 � rm,m�1
�0� exp��2�snm��2� � �rm,m�1

�0� , (10b)

tm�1,m � tm�1,m
�0� exp��1�2�s��2�nm � nm�1�

2�

� �tm�1,m
�0� , (10c)

tm,m�1 � tm,m�1
�0� exp��1�2�s��2�nm�1 � nm�2�

� �tm,m�1
�0� , (10d)

where the superscript �0� indicates Fresnel coeffi-
cients at smooth interfaces and s � 2�Z. When
working with correlated roughness, one should con-
sider that this approach with correction factors is a
scalar treatment.

3. Introduction of Incoherence: Generic Intensity
Matrix
Complete incoherence, which usually results from re-
flection of the beams from the sides of a thick sub-
strate, is treated in a manner more similar to that of
coherent reflections than to the partially incoherent
ones. No modifying terms such as those in Eqs. �10�
are needed, but the squares of the amplitudes of the
r, r�, t, and t� vectors are used instead. Let the mth
layer of a multilayer structure composed of N layers
and N � 1 interfaces be the incoherent one �Fig. 1�.
The calculation is carried out in two steps. First, the
system transfer matrices of the two coherent multi-
layers are calculated �reducing them to two single
effective interfaces bounding the incoherent layer�.
The complex-amplitude reflection and transmission
coefficients of these two multilayer systems are also
evaluated from their transfer matrices. When these
coefficients are replaced with their square ampli-
tudes, the modified matrices become

T0�m
int �

1
�t0,m�2 � 1 ��rm,0�2

�r0,m�2 ��t0,mtm,0�2 � �r0,mrm,0�2�� ,

(11)

Tm��N�1�
int �

1
�tm,N�1�2

� � 1 ��rN�1,m�2

�rm,N�1�2 ��tm,N�1tN�1,m�2 � �rm,N�1rN�1,m�2�� ,

(12)
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and directly yield the reflectance and transmittance
of the two coherent multilayers rather than their
complex-amplitude reflection and transmission coef-
ficients. These modified matrices �intensity matri-
ces� are then multiplied with the similarly modified
propagation matrix of the incoherent mth layer:

to yield the system intensity transfer matrix

T0��N�1�
incoh � �T11

incoh T12
incoh

T21
incoh T22

incoh� � T0�m
int Pm

intTm��N�1�
int , (14)

where Pm
int is the intensity propagation matrix of the

incoherent layer �its elements being the square am-
plitudes of the respective Pm matrix elements� and
reduces to the unity matrix for a transparent layer.
In this way, instead of summing the corresponding
field amplitudes reflected by the sides of the incoher-
ent layer, we achieve the addition of field intensities
as imposed by the complete incoherence.

When m � N � 1 in Eq. �14�, the general matrix
reduces to the coherent intensity matrix T0��N�1�

int ,
treating the multilayer as coherent and yielding the
reflectivity and the transmissivity rather than their
complex amplitudes. When m � N the case of an
incoherent finite backsubstrate is encountered,
whereas m � N stands for the existence of an inter-
mediate thick incoherent layer.

The reflectance and the transmittance of the sys-
tem are given by the elements of the incoherent
transfer matrix as

Rincoh �
T21

incoh

T11
incoh

� �r0,m�2 �
�t0,mtm,0rm,N�1�2 exp��4���c�km dm�

1 � �rm,0rm,N�1�2 exp��4���c�km dm�
,

(15)

Tincoh �
1

T11
incoh

� �t0,m�2
�tm,N�1�2 exp��2���c�km dm�

1 � �rm,0rm,N�1�2 exp��4���c�km dm�
,

(16)

where media 0 and N � 1 are equal and correspond
to the medium where the sample is inserted and mea-
sured �usually the air�. Equations �15� and �16� are
in fact the sums of the infinite Airy geometrical series

for the field intensities of the partial waves reflected
inside the substrate,15 as expected.

When the finite-thickness substrate is coherent, it
is expected that instead of adding field intensities of
the partial waves, which are multiply reflected
within the thick substrate, we should add the corre-

sponding complex amplitudes. The coherent re-
sponse of the finite substrate is represented by the
generic transfer matrix. The summation of the com-
plex amplitudes is revealed when the matrix is prop-
erly split �as was done with the intensity generic
matrix in the treatment of incoherence�:

T0��N�1� � �T11 T12

T21 T22
� � T0�mPmTm��N�1�, (17)

The complex-amplitude reflection and transmission
coefficients of the system are given by the elements of
the coherent generic transfer matrix as

r0,N�1 �
T21

T11

� r0,m �
t0,mtm,0rm,N�1 exp��2���c�km dm�

1 � rm,0rm,N�1 exp��2���c�km dm�
,

(18)

t0,N�1 �
1

T11
� t0,m

tm,N�1 exp�����c�km dm�

1 � rm,0rm,N�1 exp��2���c�km dm�
.

(19)

Equations �18� and �19� represent the summation of
the geometrical series of the field amplitudes, as ex-
pected. When the reflection and the transmission
coefficients in the right-hand parts of Eqs. �18� and
�19� are replaced with their absolute squares, Eqs.
�15� and �16� are obtained corresponding to the treat-
ment of incoherence without the use of intensity ma-
trices �this approach was followed in Ref. 14 and is
adequate for an arbitrary thin-solid-film multilayer
structure on one side of a single thick substrate�.
Equations �15� and �16� can be seen to be the results
of spectral averaging performed taking the integral of
the coherent reflectance or transmittance over the
spectral window of the polychromatic source.3

The splitting of the matrices in both cases �Eqs.
�14� and �17�� enabled the representation of the mul-
tiple reflections inside the thick substrate as well as
the comparison with the Airy summation formulas

T0�m
int Pm

intTm��N�1�
int �

1
�t0,m�2 � 1 ��rm,0�2

�r0,m�2 ��t0,mtm,0�2 � �r0,mrm,0�2�� � ��exp�i
m��2 0
0 �exp��i
m��2�

�
1

�tm,N�1�2
� 1 ��rN�1,m�2

�rm,N�1�2 ��tm,N�1tN�1,m�2 � �rm,N�1rN�1,m�2�� , (13)

Ç
Pm

int
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found in the literature for a film on a substrate.15

Although the matrix method may not straightfor-
wardly reveal the multiple reflections inside the mul-
tilayer, it retains its simplicity in contrast to the
summation formulas,2,3,15 which become �analytical-
ly� cumbersome even for few layers on a substrate.

The advantage of the generic intensity matrix is
that its application to multilayers with an incoherent
layer in arbitrary position is quite easy. The prob-
lem of multilayer structures with more than one in-
coherent layer20–27 could also be dealt with in cases
such as that with a Fabry–Perot resonator or a beam
splitter. As an example we can consider the case of
a structure with N layers: medium 0 �semi-infi-
nite��coherent layers from the first to the �m � 1�th
layer�mth layer incoherent�coherent layers from the
�m � 1�th to the � j � 1�th layer�jth layer incoherent�
coherent layers from the � j � 1�th to the Nth layer�
medium N � 1 �semi-infinite�. The intensity
transfer matrix of this system is then

T0��N�1�
incoh � T0�m

int Pm
intTm�j

int Pj
intTj��N�1�

int . (20)

Prior to the partition of the multilayer in groups of
coherent or partially coherent piles and the formation
of the corresponding intensity matrices of the groups,
each layer is defined in the computation algorithm by
its transfer matrix Pm�1Dm�1

�1 Dm �from Eqs. �1�, �2�,
and �10��:

When the layer is coherent, the � factors become
equal to unity ��ij � �	22 � 1�, whereas in the case of
a layer with a rough side the � factors introduce
partial coherence ��11 � 1��, �12 � ���, �21 � ���,
�22 � �, �	22 � �����.

The refractive index and the thickness appearing
in the phase-thickness parameters, 
m�1, of each
layer, should also be defined in the algorithm. The
influence of a �Z � 1000 Å� rough surface or interface
is illustrated for a SiC–Si structure in Fig. 2. Two
sets of reflectivity spectra were calculated for a 2-�m-
thick SiC layer on a thick 300-�m Si substrate, thus
introducing partial coherency in the generic matrix.
The set of spectra with the high average reflectivity
level were calculated assuming the Si substrate to be
finite incoherent, whereas for the low-level set the
semi-infinite substrate approximation was applied.
The spectra corresponding to absence of roughness at
both the surface and the interface are displayed in
dotted–dashed curves for both sets. The introduc-
tion of surface roughness �dotted curves in both sets�
leads to a reduction of contrast in the interference-
fringe pattern, but the main feature is the lowering of
the average reflectivity level at high frequencies.

When the 1000 Å roughness is introduced in the in-
terface �solid curves� rather than in the surface, the
modification is quite different and easy to distin-
guish: The influence of interface roughness grows
with wave number as well, but instead of lowering
the average reflectivity level, it leads to a more severe
reduction of contrast in the interference-fringe pat-
tern. When both the surface and the interface ex-
hibit the same amount of roughness �dashed curves�,
a combination of their characteristic features, that is,
the lowering of the average level and the reduction in
contrast, respectively, is apparent. However, the
difference in the reflectivity level observed between
the two sets of spectra results from the average ele-
vation of reflectivity when the Si substrate is consid-
ered to be finite and incoherent. This elevation is
eliminated in the region of strong lattice absorption,
near 800 cm�1, where light is prevented from reach-
ing the backside of the substrate �Si–air interface�.

In Fig. 3 the spectrum of Fig. 2 corresponding to a
2-�m SiC layer on a semi-infinite Si substrate exhib-
iting a 1000Å rough interface is compared with the
spectrum of a bulk SiC calculated without roughness
�thin and thick solid curves, respectively�. It can be
seen that the reflectivity of a SiC–Si structure exhib-
iting a rough interface approaches the reflectivity of
bulk SiC at high wave numbers. The influence of a
rough surface �Z � 1000 Å� is also shown in compar-

Fig. 2. Influence of a rough surface or interface �Z � 1000 Å�.
Two sets of calculated reflectivity spectra for a 2-�m-thick SiC
layer on a thick 300-�m Si substrate, introducing partial coherency
in the generic matrix. The set of spectra with the high average
reflectivity level were calculated assuming the Si substrate to be
finite incoherent, whereas for the low-level set the semi-infinite
substrate approximation was applied.

1
tm�1,m

� �11 exp�i
m�1� ��12rm,m�1 exp�i
m�1�
�21rm�1,m exp��i
m�1� ��22tm�1,mtm,m�1 � �	22rm�1,mrm,m�1�exp��i
m�1�

� . (21)
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ison �dashed and dotted–dashed curves�. The spec-
trum of bulk SiC exhibiting surface roughness is in
fact the average of the corresponding fringe pattern of
a SiC–Si structure with an ideal SiC–Si interface and
1000Å surface roughness. Figure 3 justifies the fea-
tures discussed for a film on a substrate in Fig. 2.
Interface roughness destroys interference, maintain-
ing the average reflectivity to the level of the bulk,
whereas surface roughness lowers the average reflec-
tivity, since it prevents greater amounts of light from
entering the sample as the wave number increases.

In the lattice vibration region of the reflectivity
spectra of Fig. 3 ��TO � 796.5 cm�1, �TO � 20 cm�1,
�� � 3.3, �� � 6.7; see Eq. �22�� between 790 and 870
cm�1 the SiC film becomes opaque and its spectrum
overlaps the spectrum of bulk SiC. The SiC–Si in-
terface, either rough or smooth, cannot contribute to
reflectivity, and only the existence of surface rough-
ness could be revealed, in this region, after plotting in
a different scale.

The effect of a thick layer, either coherent or inco-
herent, is illustrated with the calculated spectra of
Fig. 4. The generic system transfer matrix was used
for the calculation of reflectance of an air–doped-Si–
SiO2–Si–air structure. Structures of buried amor-
phous SiO2 in Si, easily obtained by oxygen ion
implantation or wafer bonding, are of great techno-
logical importance.28–31 The top Si layer was as-
sumed to be homogeneously doped and to have a
free-carrier volume concentration of 2.5 � 1020 cm�3,
and a thickness of 0.08 �m. The buried insulating
SiO2 layer was 1.6 �m thick, had a lower refractive
index ��� � 2.14 compared with the �11.7 value of Si
at 9000 cm�1�, and exhibited resonance at 455, 800,
1065, and 1200 cm�1. The thick �850-�m� Si sub-

strate lead to narrow oscillations in the spectrum
when the coherent formulation was used. Thick-
film interference is suppressed when the substrate is
considered to be incoherent, leading to a smoothing of
the spectrum as can be seen in Fig. 4. The shape of
the smooth spectrum is independent of the substrate
thickness when the substrate is transparent �kN � 0
in Eq. �16��. In this case the incoherent substrate
propagation matrix becomes equal to the identity ma-
trix.

In the region of the strong atomic vibration absorp-
tion of SiO2 �1065 cm�1� in Fig. 4 the narrow �thick-
film� oscillations vanish, indicating that light does
not reach the substrate. For lower frequencies, how-
ever, the levels of light absorption drop and thick-film
oscillations appear again. Their amplitude is dras-
tically reduced compared with that of the transparent
region above 2000 cm�1, on account of the absorption
of light associated with free-carrier excitations.
Light thus reaches the substrate in this spectral re-
gion. The above discussion is also justified by the
values of the transmissivity of light in the substrate
calculated assuming a semi-infinite substrate �10% in
the low-frequency limit as well as 1% and 0.4% in the
region of the two strongest lattice resonances�.

3. Refractive-Index Profiling in the Infrared
Wavelength Region

The refractive-index profile assumed to simulate the
one-dimensional inhomogeneity of a sample under
investigation can be partitioned into an unlimited
number of uniform layers. Each layer is repre-
sented by its transfer matrix of Eq. �21� and defined
by its thickness, d, and by its complex refractive in-
dex, ñ, or by its complex permittivity, �̃ �the square of

Fig. 3. Comparison of the spectrum of bulk SiC with the spectrum
of Fig. 2 corresponding to a 2-�m SiC layer on a semi-infinite Si
substrate exhibiting a 1000Å rough interface �thick and thin solid
curves, respectively�. The influence of a rough surface �Z �
1000Å� is also shown in comparison �dashed and dotted–dashed
curves�.

Fig. 4. Calculated reflectance spectra of a doped Si–SiO2–thick-Si
structure with the generic matrix formulation �dSi � 0.08 �m,
dSiO2 � 1.6 �m, dSi � 850 �m�. The calculations were performed
considering either a coherent substrate of finite thickness �spec-
trum with narrow oscillations� or an incoherent one �smooth spec-
trum�.
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the complex refractive index�. In the general case
the complex permittivity of each layer in the infrared
is given as a function of wave number � as8,32

�̃ � �
j

��j��TOj�
2

�TOj
2 � �2 � i�j�

�
�p

2��

�2 � i�j�
� ��. (22)

The parameters should vary from layer to layer �in
order to simulate the depth variation of the refractive
index�.

The first term, which results from the interaction of
ions or atoms of the solid with the electromagnetic
field is the sum of the contributions to the dispersion.
It is the so-called lattice dispersion, and the atomic
vibrational parameters of �TO, �, and �� �TO fre-
quency, damping constant, and oscillator strength,
respectively� have their usual spectroscopic mean-
ing.8,32 The second term is due to intraband carrier
transitions8,33 ��p, plasma frequency; �p, free-carrier
damping� within the conduction or valence band,
whereas, the third term, ��, is due to bound electrons
�its weak dispersion in the infrared usually repre-
sented by a Sellmeir or Cauchy equation1,5�.

The way a depth variation of a parameter is en-
countered in the matrix equations is illustrated below
for an implantation doped Si wafer with a Gaussian
depth distribution8 of free carriers �with a standard
deviation �R�.

The carrier profile is directly partitioned into
2���R��
x homogeneous layers of equal thickness

x���R�10� with the carrier concentration NCj in
each layer given as

Ncj � Nc,max exp���1�2������R � j
x���R�2�, (23)

where Nc,max is the peak of the concentration profile
and j is the layer counter. Convergence tests show
that by truncation of the Gaussian at 2� standard
deviations, the resulting steps in the refractive-index
profile have a negligible influence on the calculated
spectrum �less than the experimental accuracy of
0.003 for the difference in absolute reflectance val-
ues� when � is set equal to 4 or in some cases even 3.
The depth dependence of the dielectric function is
related to the carrier concentration dependence of the
plasma frequency given as8

�pj
2 �

4�Ncje
2

m*
, (24)

where m*��0.3me� is the conductivity effective mass
of electrons in Si.

Given the depth dependence of Nc�x�, the optical
constants can thus be computed for each layer com-
prising the carrier profile, as follows:

a. The complex dielectric function �̃ � �	 � i� � �n �
ik�2 is calculated for each layer and written in terms
of its real and imaginary parts. For the j layer this
yields

�	cj � nj
2 � kj

2 � �� �
�pj

2 ��

�2 � �p
2 , (25a)

�  cj � 2njkj �
�p�pj

2 ��

���2 � �p
2�

. (25b)

b. Equations �25� are solved for the refractive index
nj and extinction coefficient kj,

nj � �1⁄2��	j � ��	j
2 � �  j

2�1�2��1�2,

kj � �1⁄2���	j � ��	j
2 � �  j

2�1�2��1�2. (26)

These optical parameters and the thickness, dj � 
x,
of each layer are then introduced into the multilayer
matrix equations to compute the reflectance as a
function of frequency.

The model also includes as adjustable parameters
the rms heights Zi, of surface and�or interface irreg-
ularities, which can be viewed as macroscopic rough-
ness. Zi is initially set to zero and is allowed to be
fitted only when the fit quality does not improve �af-
ter several models have been tried�.

4. Applications

A. Inhomogeneous Layer on a Thick Substrate

An example of simulation of an inhomogeneous ion-
implanted area that uses multilayer modeling is il-
lustrated in Figs. 5 and 6. Figure 5 illustrates
experimental and calculated reflectance spectra of a
doped Si slab. The thickness of the slab is 200 �m,
whereas that for the doped region is 0.286 �m. The
doped region was formed after 70 keV, 6 � 1015

As�cm�2 implantation followed by annealing at
950 °C for 1�2 h. The free-carrier concentration
depth profile in the doped region was simulated by
use of two half-joined Gaussians, each one parti-

Fig. 5. Experimental and calculated reflectance of a doped-Si–Si
structure �70 keV, 6 � 1015 As�cm�2, 0.5 h annealed at 950 °C�
with application of either the incoherent finite-substrate correction
or the semi-infinite substrate approximation. The 0.286-�m-
thick inhomogeneous doped Si region was partitioned into 80 sam-
pling layers simulating two half-joined Gaussians �RP � 3800Å,
�R1 � 95Å, �R2 � 620Å�.
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tioned to 40 layers �see inset in Fig. 6�. For the
surface-side half-Gaussian a standard deviation of
�R1 � 95Å was chosen, whereas for the bottom the
standard deviation chosen was �R2 � 620Å. The
maximum of the free-carrier concentration �where
the two half-Gaussians join� was found to be approx-
imately 3 � 1020 cm�3. The semi-infinite substrate
approximation failed to give a fit at high frequencies.
An appreciable fit was obtained only when the finite
substrate correction was used �Fig. 5�. The transla-
tion of the assumed free-carrier concentration depth
profile to the corresponding depth profiles of the op-
tical constants �the real and the imaginary parts of
the refractive index� is illustrated in Fig. 6 for three
different frequencies �2000, 3000, and 4000 cm�1�.
The effects of dispersion are apparent: The higher
the frequency, the lower the distortion caused by the
free carriers to the refractive index of Si.

B. Thick Incoherent Substrate between Partially Coherent
Layers

Figure 7 illustrates experimental data �squares� and
the best fit �thick solid curves� for a sample with an
incoherent substrate between partially coherent lay-
ers �air–Si–thick SiO2–Si–air�. The three-layer
structure was formed by low-pressure chemical vapor
deposition �LPCVD� of poly Si on both sides of a thick
SiO2 substrate. The LPCVD process involved de-
composition of silane gas at 630 °C. Fourier-
transform infrared �FTIR� analysis revealed the
thickness values of the three layers to be d1 � 0.34
�m, d2 � 370 �m, and d3 � 0.35 �m. The SiO2 layer
�layer 2� was considered to be incoherent, and the

intensity matrices were used. If the SiO2 substrate
was considered to be coherent, a dense fringe pattern
would have occurred. This is illustrated by the thin
solid curve in Fig. 7 with a plotting step of 20 cm�1.
In the low-frequency portion of the illustration in Fig.
7 it is seen that the two spectra are coincident. This
is expected, since at low frequencies the substrate
exhibits strong absorption, preventing light from
reaching the back SiO2–Si interface.

The roughness parameters of the front and the rear
Si–SiO2 interfaces �Z2 and Z3, respectively� were
found to be below the 100Å low detectable limit of
FTIR spectroscopy for this sample. The spectra
were taken at Aristotle University of Thessaloniki
with a Bruker IFS113v spectrophotometer. The
roughnesses at the two surfaces of the poly-Si layers
were determined to be Z1 � 800Å for the front Si and
Z4 � 900Å for the rear Si surface. It can be seen
that the effects of roughness become important at
high frequencies at which the wavelength of radia-
tion cannot be considered too large compared with the
surface or interface inhomogeneities.

With the best-fit layer thickness and refractive-
index values for the experimental data of Fig. 7 a set
of calculated spectra was created, illustrated in Fig.
8. These calculated spectra exhibit how the same
amount of roughness can affect FTIR spectra in a
different way depending on which interface is rough.
Circles represent the case of completely smooth sur-
face interfaces. Diamonds and squares represent
the cases of a 900Å roughness in the front surface and
the front Si–SiO2 interface, respectively. The effects
of either the back SiO2–Si interface or the backsur-

Fig. 6. Depth profiles of the real and the imaginary parts of the
refractive index, n and k, corresponding to the free-carrier
asymmetric-Gaussian profile in the doped Si–Si structure of Fig. 5
calculated at � � 2000, 3000, and 4000 cm�1. As � increases, the
contribution of the free-carrier plasma dispersion diminishes and
the magnitudes of the dip in n and the peak in k decrease. The
inset exhibits two half-joined Gaussians modeling the carrier con-
centration depth profile.

Fig. 7. Experimental and calculated reflectance spectra of a 370-
�m-thick SiO2 layer between two thin poly-Si layers with thick-
ness 0.34 and 0.35 �m, respectively. The best-fit reflectivity
�thick solid curve� was calculated with the incoherent finite-
substrate formalism for a thick intermediate layer. Roughness at
both the front and the rear Si surfaces was detected: 800Å and
900Å, respectively. The thin solid curve designating a dense
fringe pattern was calculated assuming the oxide substrate to be
coherent, for comparison.
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face �Si–air interface� exhibiting roughness of 900Å
are illustrated by the crosses and the triangles, re-
spectively. The solid curve represents the combined
action of the two Si surfaces being rough. It is ac-
tually the best-fit curve of Fig. 7. In such a structure
with an incoherent layer sandwiched between coher-
ent ones, features similar to those in Fig. 2 are ob-
servable as well regarding the influence of the Z
parameters.

5. Conclusion

The matrix method for the analysis of the optical
response of coherent multilayers has been general-
ized to take into account partially coherent and inco-
herent reflected or transmitted light. This approach
is also integrated to include models for refractive-
index depth profiling. Its applicability was demon-
strated concerning the optical characterization of ion-
implanted materials as well as multilayers with a
thick substrate in an arbitrary position within their
structure and multilayers of conducting or insulating
layers with rough surface and interfaces.

This research was financially supported by the
Greek General Secretariat of Research and Technol-
ogy, Ministry of Development, under project
PENED96�1424.
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